Building Multiversal Semantic Maps for Mobile Robot Operation

نویسندگان

  • José-Raúl Ruiz-Sarmiento
  • Cipriano Galindo
  • Javier González
چکیده

Semantic maps augment metric-topological maps with meta-information, i.e. semantic knowledge aimed at the planning and execution of high-level robotic tasks. Semantic knowledge typically encodes human-like concepts, like types of objects and rooms, which are connected to sensory data when symbolic representations of percepts from the robot workspace are grounded to those concepts. This symbol grounding is usually carried out by algorithms that individually categorize each symbol and provide a crispy outcome – a symbol is either a member of a category or not. Such approach is valid for a variety of tasks, but it fails at: (i) dealing with the uncertainty inherent to the grounding process, and (ii) jointly exploiting the contextual relations among concepts (e.g. microwaves are usually in kitchens). This work provides a solution for probabilistic symbol grounding that overcomes these limitations. Concretely, we rely on Conditional Random Fields (CRFs) to model and exploit contextual relations, and to provide measurements about the uncertainty coming from the possible groundings in the form of beliefs (e.g. an object can be categorized (grounded) as a microwave or as a nightstand with beliefs 0.6 and 0.4, respectively). Our solution is integrated into a novel semantic map representation called Multiversal Semantic Map (MvSmap ), which keeps the different groundings, or universes, as instances of ontologies annotated with the obtained beliefs for their posterior exploitation. The suitability of our proposal has been proven with the Robot@Home dataset, a repository that contains challenging multi-modal sensory information gathered by a mobile robot in home environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building Semantic Annotated Maps by Mobile Robots

The work presented here explains a framework to build semantic annotated maps from laser range measurements of a mobile robot. A hand-crafted and a learning classifier is explained. Two alternative methods to aggregate the resulting class membership vectors into a grid map have been developed and are presented. Both alternative methods will be motivated and described in detail and discussed cri...

متن کامل

Extracting Semantic Information from Visual Data: A Survey

The traditional environment maps built by mobile robots include both metric ones and topological ones. These maps are navigation-oriented and not adequate for service robots to interact with or serve human users who normally rely on the conceptual knowledge or semantic contents of the environment. Therefore, the construction of semantic maps becomes necessary for building an effective human-rob...

متن کامل

Building 3d Maps with Semantic Elements Integrating 2d Laser, Stereo Vision and Imu on a Mobile Robot

Building 3D models is important in many applications, ranging from virtual visits of historical buildings, game and entertainment, to risk analysis in partially collapsed buildings. This task is performed at different scales: city, buildings, indoor environments, objects and using different sensors: cameras, 2D and 3D laser, etc. Moreover, different map representation have been considered: metr...

متن کامل

Fusion of aerial images and sensor data from a ground vehicle for improved semantic mapping

This paper investigates the use of semantic information to link ground-level occupancy maps and aerial images. A ground-level semantic map is obtained by a mobile robot equipped with an omnidirectional camera, differential GPS and a laser range finder. The mobile robot uses a virtual sensor for building detection (based on omnidirectional images) to compute the ground-level semantic map, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2017